University of Carthage, Tunisia. National Institute of Research in Rural Engineering, Waters and Forests (INRGREF)

Phenotypic Variability and Seed Yield of *Jatropha curcas* L. Introduced in Tunisia

Ezzeddine Saadaoui

Regional Station of Gabès
Laboratory of Management and Valorization of Forest Resources

Marrakech, November 15th 2013

Plant Material

Eight *Jatropha curcas* accessions were introduced to Tunisia from four countries: Brazil, Suriname,

Mozambique and Tanzania

Brazil: NMB, PAR, MGB, VFB and RSB

■Suriname : SUR

Mozambique: MOZ

■Tanzania : ARU

Experimental site

- Dissa experimental station (Gabes, Tunisia; 33° 54' N and 10° 02' E), South of Tunisia
- Area:1000 m²,
- Altitude :44 meters
- Bioclimate: lower semi-arid
- Annual rainfall averages :130 mm / year
- Annual Potential Evapo-Transpiration (PET):1400 mm
- Annual temperature : 24,5°C
- Maximum temperatures: 34°C
- Minimum temperature : 12,8°C

Soil Characteristics

- Soil is calcimagnesic
- ↓ 15 35% of gypsum (CaSO₄2H₂O) at depths of 50-100 cm
- **♣** 15% of Calcium carbonate (CaCO₃).
- ♣ Soil texture was drained and sandy; 85% sand, 10 % clay and 5 % silt.
- **♣** PH is 7,7
- ♣ Electric conductivity EC = 2,2 mS/cm.

Irrigation Water

- ♣ Irrigation: treated wastewater
- + pH = 6,9
- \pm EC = 4,7 mS/cm,
- **♣** COD (Chemical Oxygen Demand) = $168 \text{ mgO}_2/l$
- BOD5 (Biochemical Oxygen Demand) = $40 \text{ mgO}_2/1$.
- **♣** Cl⁻: 39.4 mg.l-¹
- **♣** Ca⁺⁺: 0.44 mg.1-¹
- \bullet Mg⁺⁺ : 0.32 mg.l-¹
- \bullet SO₄²⁻: 450 mg.l-¹.

Experimental protocol

- spacing was 2m x 3m

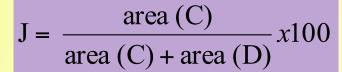
Studied Parameters

- ♣ Plant height (PH) was measured for each individual every year
- canopy circumference (CC) was measured in 2012
- Mature fruits were harvested and Seeds obtained were weighed every year

Morphological paramters

- ♣ Petiole length (PL),
- limb length (LL)
- limb width (LW)
- ♣ Foliar surface (FS)
- ♣ Number of nodes (NN)

Seed morphology


- Forty seeds per accession
- Seeds were photographed with a Nikon D60 camera adapted in a tripod.
- Five magnitudes in relation with morphology where obtained from each image:

(perimeter)²

 $I = 4\pi$

- area,
- perimeter,
- length/width,
- circularity index
- J index.

area (C): common region and area (D): regions not shared

Salt conditions

March, 2013

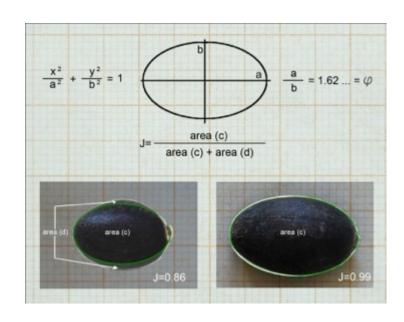

- ♣ Installation of experimental station in the region of El Hicha (Gabes) characterized by:
- Eight plants per accession (three months)
- \blacksquare Salt soil: pH = 8.43
- \pm EC = 24.9 mS/cm
- \blacksquare Rate of gypsum (CaSO₄2H₂O): 18.65%
- Rate of Calcium carbonate (CaCO₃): 5.8%
- ♣ Irrigation with salty waters: 6g NaCl / 1

Plant development

		СС					
Accessions	June	July	July	July	June	March	l 2012
	2008	2009	2010	2011	2012	2013	June 2012
NMB (n=22)	48	129	141	152	164	185	483
PAR (n=21)	38	134	144	157	164	204	474
MGB (24)	50	153	166	170	173	206	408
VFB (n=14)	32	124	138	152	153	178	368
RSB (n=22)	46	134	148	161	187	195	481
SUR (n=22)	54	147	164	176	182	204	548
MOZ (n=16)	44	150	164	178	184	211	586
ARU (n=11)	25	138	152	170	184	217	594

seed yield

	Accessions	December	August	November	January	August	October	total
	Accessions	2011	2012	2012	2013	2013	2013	totai
	NMB	16	19	114 (n=4)	98	256	69	572
		(n=4)	(n=2)		(n=10)	(n=12)	(n=8)	
	PAR	35	112	0	120,6	199,5	26,7	493.8
		(n=6)	(n=3)		(n=8)	(n=9)	(8)	
	MGB	4	20	150,6	101.3	144,4	34.7	455
		(n=5)	(n=3)	(n=3)	(n=11)	(14)	(11)	
	VFB	7	15	0	64.2	211,3	43.6	341.1
		(n=1)	(n=15)		(n=4)	(n=6)	(6)	
	RSB	12,5	53,2	0	112	215,4	39.5	432.6
	КЗВ	(n=8)	(n=5)		(n=8)	(n=10)	(8)	
	SUR	25,3	43	0	64.4	90,3	16.7	239.5
	SUK	(n=6)	(n=2)		(n=11)	(n=7)	(8)	
-	MOZ	7,6	8,5	0	78.2	63,6	29.3	187.5
	WIOZ	(n=5)	(n=4)		(n=8)	(n=5)	(9)	
	ARU	14	24	0	140.4	171,3	26.3	376
	AKU	(n=3)	(n=2)		(n=7)	(n=8)	(7)	


Morphological variability

- ♣ Significant effect (P<0,05) of accession for all five characters under study (FS, LL, LW, PL, NN).
- ♣ The eight *J. curcas* accessions showed high phenotypic diversity
- ♣ VFB forms an isolated group with higher values of LL and PL;
- **4**MGB, have higher values of LW and FS.
- ♣ All foliar parameters are lower for MOZ.
- ♣ The highest number of nods is observed for MGB, and lowest for VFB

Seed morphology

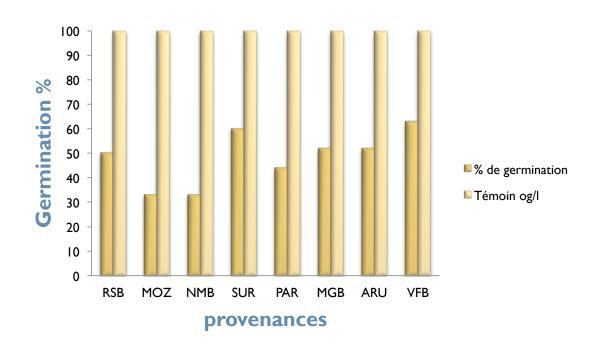
- ♣ Area and perimeter were lower in seed populations obtained from SUR and MOZ, and higher in seed populations from ARU.
- ♣ Length to width ratio was lower in MOZ and higher in MGB
- Circularity index values were lower in MGB and higher in MOZ

Seed morphology

- ♣ J index oscillates between 0,86 and 0,99 (0,95),
- ♣ Mean values are lower in MOZ,
- ♣ and higher in VFB and MGB.

Salt tolerance Preliminary results

- Low tolerance to salt stress
- Rate of mortality raised for MOZ et MGB
- A better tolerance for PAR et ARU
- Appearance of a disease in August, 2013, caused probably by a fungi: high rate of mortality



Test germination (9 g NaCl / 1)

- MOZ % germination low
- VFB % germination elevead

Conclusions

- ♣ Eight accessions of Jatropha curcas are variable
- ♣ Variability: growth, morphology and seeds yield.
- ♣ Size and shape of seeds are different between provenances,
- NMB and MGB are the most productive provenances
- MOZ and SUR are the least productive provenances
- ♣ In Gabes station, the productivity of J. curacs is low, in comparison with other countries (

Discussions

- MGB,VFB and MOZ showed different morphological parameters and different behavior
- ♣ high phenotypic diversity joins the result obtained in America (Ovando-Medina et al., 2011b, He, 2011, Brasileirioet al., 2013), China, India and Philippines (Gohil and Pandya, 2009, Vijayanandet al., 2009; Das et al., 2010, Zapicoet al., 2011, Guan et al., 2013).
- ♣ high morphological variability does not always reflect high genotypic variability (Xu et al., 2012).
- # the high phenotypic variability and the difference in productivity represented a good potential for early selection
- ♣ Environmental factors seem important on the behavior of the provenances
- ♣ Indeed, the productivity of J. curcas varies with genotypes, varieties and ecological conditions (Sosa-Segura et al., 2012).
- ♣ The study of the size and the shape of the seed is interesting, these parameters are in connection with the oil yield and the level of toxicity (Makkar, 2008).

Perspectives

- ♣ Follow the behavior of various provenances in the conditions of salt stress
- Study the effect of cutting on the growth and the production
- Analyze the yield in seeds oil for every provenance (Study realized by my colleagues)
- Installation of experimental station in the region of Kebili, in the Saharan conditions
- Allelopathic effect of Jatropha curcas on germination of cultivated species in the South of Tunisia

Research team

National Institute of Research in Rural Engineering, Waters and Forests (Tunisia)

- Mohamed Larbi Khouja
- Chokri Ben Romdhane

Regional Commission for Agricultural Development - Gabes (Tunisia)

- Mohamed Grira
- Saad Abdelkabir

IRNASA-CSIC - Salamanca (Spain)

- Emilio Cervantes
- Martín José Javier

